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Mapping the agricultural drought based on the long-term 1 

AVHRR NDVI and North American Regional Reanalysis 2 

(NARR) in the United States, 1981-2013 3 

Abstract: To provide a long-term perspective of drought variability from 1981 to present, we 4 

develop a new monthly agriculturally-based drought index called the Integrated Scaled Drought 5 

Index (ISDI). This index integrates Normalized Difference Vegetation Index (NDVI) from 6 

Advanced Very High Resolution Radiometer (AVHRR) data (available from 1981 to present), 7 

land surface temperature (LST), precipitation (PCP), and soil moisture (SM) data from North 8 

American Regional Reanalysis (NARR) project (available from 1979 to present). This new 9 

agriculturally-based drought index incorporates important components controlling agricultural 10 

drought, particularly soil moisture, for which there are limited in-situ observations through time 11 

and across space. The optimum weights for each component of the ISDI are determined by 12 

correlation analysis with commonly used in-situ drought indices, such as the Palmer Drought 13 

Severity Index (PDSI), the Palmer Modified Drought Index (PMDI), the Palmer’s Z-index, and 14 

the Standardized Precipitation Index (SPI) at different time scales. Resulting ISDI maps are also 15 

visually compared with United States Drought Monitor (USDM) and Vegetation Drought 16 

Response Index (VegDRI) maps for empirical validation. ISDI shows strong agreement with 17 

these two national-wide drought monitoring systems. ISDI also shows strong linear correlations 18 

with corn yield anomalies in July and with soybean yield anomalies in August and strong spatial 19 

correspondence with county-level corn/soybean yield anomalies during major drought events. 20 

These results illustrate the robustness and usefulness of ISDI. This agriculturally-based drought 21 

index integrates the benefits of numerical model simulation and remote sensing technology to 22 
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account for interannual variability of drought for the longest possible time-frame in the satellite 23 

era. This long-term monthly drought index provides a longer historical perspective of drought 24 

impacts since 1981. It can be generalized to incorporate other satellite data or in-situ observation 25 

and has the potential for operational drought monitoring and assessment. 26 

Keywords: Agricultural drought; Drought indices; Soil moisture; AVHRR NDVI; Crop yield 27 

anomalies 28 

 29 

1. Introduction 30 

Drought is a devastating, recurring, and widespread natural hazard with complicated 31 

socioeconomic, environmental, and ecological impacts (AMS, 1997). Drought is a costly hazard 32 

in the United States historically, in which Consumer Price Index (CPI) adjusted drought losses 33 

exceeded 223.8 billion dollars from 1980-2016, roughly accounting for 20% of all losses from 34 

major weather events (NOAA, 2018). Within the agricultural sector, drought affects soil 35 

moisture availability and contributes to crop failures and pasture decline, posing risks on food 36 

security.  37 

Drought impacts depend on the timing, severity, and duration of the events, and on resilience. 38 

Drought monitoring and early warning are critical for agricultural production and risk adaptation 39 

as effective drought quantification can mitigate losses. Of course, identifying and quantifying 40 

drought events is difficult due to its complex and diverse nature, reflected in its many definitions 41 

(e.g., meteorological, agricultural, hydrological, and socioeconomic), and the varying criteria 42 

used to estimate its severity (AMS, 1997; Heim, 2002; IPCC, 2001). Appropriate quantification 43 

of drought for a variety of applications (e.g., agricultural drought or hydrological drought) 44 
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requires consideration of a wide range of contributing processes (Sheffield, Goteti, Wen, & 45 

Wood, 2004; Wilhite, 2000). 46 

Drought monitoring mainly has been based on in-situ drought indices calculated from station-47 

based, or areally-based meteorological data. The Palmer Drought Severity Index (PDSI) is based 48 

on the supply-and-demand concept of water balance equation using precipitation, temperature, 49 

and available water capacity of the soil (Palmer, 1965). The PDSI and its variations, such as the 50 

Palmer Z index (Palmer, 1965), Palmer Hydrologic Drought Index (PHDI) (Palmer, 1965), and 51 

Palmer Modified Drought Index (PMDI) (Heddinghaus & Sabol, 1991) have been widely used 52 

for drought assessment and water resources management decisions. Shafer and Dezman (1982) 53 

developed the Surface Water Supply Index (SWSI) to monitor abnormalities in surface water 54 

supply using historical records of streamflow, snow pack, precipitation, and reservoir 55 

components. The Standardized Precipitation Index (SPI) was developed to quantify precipitation 56 

deficit for different time scales based on only precipitation data (McKee, Doesken, & Kleist, 57 

1993). Compared with PDSI, SPI requires less data, has flexible time scales, and is spatially 58 

invariant (Guttman, 1998). Recently, Vicente-Serrano, Beguería, and López-Moreno (2010) 59 

proposed the Standardized Precipitation Evapotranspiration Index (SPEI) based on precipitation 60 

and temperature data, which incorporates an evapotranspiration component into the calculation 61 

of SPI and is appropriate for detecting drought changes in the context of global warming 62 

(Vicente-Serrano et al., 2010). 63 

Satellite remote sensing data have also been used to quantify drought when in-situ weather 64 

station observations are not available (Kogan, 1995a; Rhee, Im, & Carbone, 2010), resulting in 65 

several remote-sensing-based drought indices. Among them, the Normalized Difference 66 

Vegetation Index (NDVI) developed by Rouse, Haas, Schell, and Deering (1974) has been 67 
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widely for drought monitoring (Peters et al., 2002). NDVI is the normalized reflectance 68 

difference between the near-infrared (NIR) band and visible red band since the chlorophyll A 69 

and B within vegetation leaf have peak absorption within the visible (red) portion of the 70 

electromagnetic spectrum and spongy mesophyll cells have an optimum reflection region in NIR 71 

wavelengths. NDVI can effectively reflect the physiologically functioning surface greenness 72 

level and higher NDVI values represent greater photosynthetic capacity of the vegetation canopy 73 

(Tucker, 1979). However, NDVI contains both weather-related and ecosystem components 74 

(Kogan, 1995a). Kogan (1995a) developed the Vegetation Condition Index (VCI) by linearly 75 

scaling NDVI values from 0 to 1 for each grid cell to separate weather-related components from 76 

ecosystem components. To distinguish drought effects from other environmental factors (e.g., 77 

excessive wetness, pest, plant disease), related climate information from satellite observation or 78 

in-situ observation could be integrated with NDVI data (Kogan, 1995b). In addition to VCI, 79 

thermal band based Temperature Condition Index (TCI) was developed to provide additional 80 

information on land surface temperature to distinguish vegetation stress caused by drought 81 

events from other factors (Kogan, 1995b). The linear combination of VCI and TCI results in a 82 

Vegetation Health Index (VHI), reflecting both temperature and precipitation conditions (Kogan, 83 

1995b). 84 

With the development of hyperspectral remote sensing, such as the Moderate Resolution 85 

Imaging Spectroradiometer (MODIS), additional remote-sensing-based drought indices have 86 

been developed. For example, B. Gao (1996) proposed the Normalized Difference Water Index 87 

(NDWI) to detect moisture status of vegetation canopy based on the Near Infrared (NIR) channel 88 

providing information on vigor of vegetation via high optimum reflection by spongy Mesophyll 89 

cells and the Shortwave Infrared (SWIR) channel providing information on changes of water 90 
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content. Based on NDVI and NDWI, Gu, Brown, Verdin, and Wardlow (2007) proposed 91 

Normalized Difference Drought Index (NDDI) and demonstrated a quicker and stronger 92 

response to summer drought compared with NDVI and NDWI. Wang and Qu (2007) developed 93 

the Normalized Multi-band Drought Index (NMDI) based on the sensitivity findings that the two 94 

MODIS SWIR bands respond differently to soil moisture and vegetation moisture variations. 95 

NMDI uses NIR band centered at 860 nm channel (band 2) as the reference and uses the two 96 

water absorption SWIR channels centered at 1640 nm (band 6) and 2130 nm (band 7) as the soil 97 

moisture and vegetation moisture sensitive band respectively (Wang & Qu, 2007). NMDI 98 

provided solutions to separate vegetation moisture from soil moisture by amplifying one signal 99 

and minimizing the other (Wang & Qu, 2007).  100 

More recently, Rhee et al. (2010) proposed the Scaled Drought Condition Index (SDCI) for 101 

monitoring agricultural drought in both arid and humid regions. This index combines three 102 

standardized scaled remote sensing variables together – the Normalized Difference Vegetation 103 

Index (NDVI), the land surface temperature (LST) from MODIS sensors, and precipitation from 104 

the Tropical Rainfall Measuring Mission (TRMM) satellite. Through validations against in-situ 105 

drought indices and United States Drought Monitor (USDM) maps, Rhee et al. (2010) 106 

demonstrated that SDCI performed better than NDVI, NMDI, NDDI, and VHI in both arid and 107 

humid regions. The formulas of several remote sensing drought indices are shown in Table 1. 108 

 109 

Table 1 Formulas of remote sensing drought indices 110 

Drought Indices Formula 

NDVI (Normalized Difference Vegetation Index）  (ρNIR – ρRED) / (ρNIR + ρRED) 

VCI (Vegetation Condition Index) (NDVI – NDVImin) / (NDVImax – NDVImin) 
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TCI (Temperature Condition Index) (Tmax - LST) / (LSTmax – LSTmin) 

VHI (Vegetation Health Index) α * VCI + β * TCI 

NDWI (Normalized Difference Water Index) (ρNIR – ρSWIR) / (ρNIR + ρSWIR) 

NDDI (Normalized Difference Drought Index) (NDVI – NDWI) / (NDVI + NDWI) 

NMDI (Normalized Multi-band Drought Index) (ρNIR – (ρ1640nm – ρ2130nm)) / (ρNIR + (ρ1640nm 

– ρ2130nm)) 

SDCI (Scaled Drought Condition Index) (1/4) * scaled LST + (2/4) * scaled TRMM 

+ (1/4) * scaled NDVI 

Where ρ represents spectral reflectance; α and β represent the weights. 

 111 

Vegetation indices naturally lend themselves to agricultural drought measurement, but could be 112 

enhanced with information from other variables, such as precipitation, evapotranspiration, 113 

temperature, and soil moisture (AMS, 2013). Soil moisture decline is a very important indicator 114 

of agricultural drought as it reflects antecedent precipitation, evapotranspirative losses, and 115 

determines available water supply for healthy plant growth (AMS, 1997; Keyantash & Dracup, 116 

2002; WMO, 1975).  Yet, soil moisture is one of the least observed variables in the US and 117 

elsewhere globally (Sheffield et al., 2004). Without a comprehensive, large-scale, and long-term 118 

network of in-situ soil moisture measurement (Keyantash & Dracup, 2002) and shallow 119 

observation depths of remote sensing based soil moisture conditions (Leeper, Bell, Vines, & 120 

Palecki, 2016), the use of simulated soil moisture from numerical models provides a viable 121 

alternative (Sheffield et al., 2004). Numerical models can compute the soil moisture by 122 

simulating the water balance of the soil column using precipitation, air temperature, soil 123 

temperature, soil porosity, and infiltration as inputs (Keyantash & Dracup, 2002). The commonly 124 
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used and high-resolution reanalysis dataset, North American Regional Reanalysis (NARR) 125 

simulates soil moisture and serves as a good source of information for long-term soil moisture 126 

conditions. Leeper et al. (2016) demonstrated that soil moisture data from NARR could capture 127 

the timing, intensity, and spatial extent of 2012 drought using standardized soil moisture 128 

anomalies, when compared against in-situ soil moisture observations from the United States 129 

Climate Reference Network (USCRN). In the United States, there are several nation-wide 130 

drought monitoring systems, such as the United States Drought Monitor (USDM), and related 131 

indices (e.g., Vegetation Drought Response Index (VegDRI) and the Evaporative Stress Index 132 

(ESI)). These drought monitoring systems have provided national wide drought measurements 133 

since 2000.  134 

To cover the longest time-frame during the satellite era, to learn more about year-to-year 135 

variability in growing conditions and the consequent impacts on agriculture, and to incorporate 136 

one of the most important variables in agricultural drought modeling, we develop a new monthly 137 

agriculturally-based drought index that integrates satellite-based observations of vegetation state 138 

and climate information from reanalysis dataset. We use the NDVI from NOAA’s Advanced 139 

Very High Resolution Radiometer (AVHRR) sensor to take advantage of this longest NDVI time 140 

series from 1981 to present and its large area coverage. We combine this with land surface 141 

temperature (LST), precipitation (PCP), and soil moisture (SM) data from the NCEP NARR 142 

project (available 1979 to present), producing a sound, consistently blended, agriculturally-based 143 

drought index that accounts for interannual variability for the longest possible time-frame during 144 

the satellite era. Such an index can not only provide insights for historical drought impacts 145 

assessment, but also be generalized to incorporate other satellite data or in-situ observation. In 146 
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addition to putting past droughts in historical context, our new index can be applied to current or 147 

future agricultural drought monitoring. 148 

 149 

2. Data 150 

2.1. North American Regional Reanalysis (NARR) data 151 

Precipitation, land surface temperature, and total soil moisture content data were extracted from 152 

NARR data (Mesinger et al., 2006). The NARR data are updated monthly by NOAA’s National 153 

Centers for Environmental Prediction (NCEP) and the NARR data can be accessed from the 154 

National Center for Atmospheric Research (NCAR) Research Data Archive (RDA) 155 

(https://rda.ucar.edu/datasets/ds608.0/). NARR is a regional reanalysis for North America, that 156 

contains temperatures, precipitation, wind, soil moisture, radiation, evaporation, etc. (Mesinger 157 

et al., 2006). This dataset provides a long-term climatology spanning from 1979 to present over 158 

North America at a spatial resolution of 32 km and temporal resolution of 3 hours. NARR uses a 159 

recently operational version of the NCEP regional Eta model and the Noah land-surface model 160 

and assimilates high-quality observational data, including radiosondes, hourly precipitation (with 161 

PRISM correction), surface observations, aircraft, geostationary satellites, etc. (Mesinger et al., 162 

2006). This dataset is superior to NCEP/NCAR Global Reanalysis (GR), especially due to an 163 

advance in modeling and additional assimilation of precipitation and radiance (Mesinger et al., 164 

2006). NARR has the potential to represent extreme events, such as floods, droughts, and their 165 

driving mechanisms (Mesinger et al., 2006).  166 

NARR has been used widely to understand weather and climate variability across North America. 167 

Ruiz-Barradas and Nigam (2006) used NARR data to investigate the hydroclimate variability 168 

over the Great Plains. Mo and Chelliah (2006) used NARR products to produce PMDI to 169 
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monitor drought in the US. Karnauskas, Ruiz-Barradas, Nigam, and Busalacchi (2008) used 170 

NARR and 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-171 

Analysis (ERA-40) data to construct a PDSI dataset. Vivoni, Tai, and Gochis (2009) used NARR 172 

to investigate the mechanisms and effects of initial soil moisture on precipitation, streamflow, 173 

and evapotranspiration during the monsoon in New Mexico. Becker, Berbery, and Higgins (2009) 174 

used NARR to examine the seasonal characteristics of precipitation and related physical 175 

mechanisms over the US. Choi, Kim, Rasmussen, and Moore (2009) used the NARR 176 

temperature and precipitation data for hydrological modeling with Semi-distributed Land Use-177 

based Runoff Processes (SLURP). P. Gao, Carbone, and Guo (2016) used NARR data to assess 178 

and evaluate the performance of North American Regional Climate Change Assessment Program 179 

(NARCCAP) in simulating the precipitation extremes in the US.  180 

2.2. Remote sensing data 181 

NDVI data were obtained from the Global Inventory Monitoring and Modeling System (GIMMS) 182 

project to represent the vigor, robustness, and photosynthetic capacity of vegetation. The 183 

GIMMS project carefully assembles NDVI data from different AVHRR sensors and accounts for 184 

different deleterious effects, such as calibration losses, orbital drift, and volcanic eruptions 185 

(Pinzon & Tucker, 2014). The third generation GIMMS NDVI from AVHRR sensors is 186 

bimonthly spanning from the period from July 1981 to December 2013 with a spatial resolution 187 

of 1/12° lat/lon across the globe (Pinzon & Tucker, 2014). The GIMMS NDVI dataset was 188 

downloaded from the Ecological Forecasting Lab at NASA Ames Research Center 189 

(https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/). The bimonthly NDVI was aggregated into 190 

monthly. 191 

2.3. Land use/cover data 192 
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The National Land Cover Database (NLCD) products with 30m spatial resolution were used to 193 

extract the land areas of Grassland/Herbaceous (class 71), Pasture/Hay (class 81), and Cultivated 194 

Crops (class 82). We used the NLCD 2001 (Homer et al., 2007) database because this baseline is 195 

in the middle of our study period. Wickham, Stehman, Fry, Smith, and Homer (2010) used a 196 

sampling approach to assess the accuracy of NLCD 2001 and reported that the overall thematic 197 

accuracy of Anderson Level II and Level I were 78.7% and 85.3% respectively. Wickham et al. 198 

(2017) reported that the single-date overall accuracies of NLCD 2011, 2006, and 2001 were 199 

close: respectively 82%, 83%, and 83% at Level II and 88%, 89%, and 89% at Level I. The 200 

purpose of NLCD here is to extract the values of the new drought index covering those three 201 

land use types, which are used for validation of the new drought index via correlation analysis 202 

with the crop yield anomalies in section 4.3.  203 

2.4. In-situ drought index 204 

We obtained in-situ monthly drought indices, including the PDSI, PMDI, Palmer Z index, 1-205 

month SPI, 2-month SPI, 3-month SPI, 6-month SPI, 9-month SPI, and 12-month SPI from 1895 206 

to present from NOAA’s National Centers for Environmental Information (NCEI) 207 

(ftp://ftp.ncdc.noaa.gov/). These indices at the climate divisional spatial scale were primarily 208 

used for derivation and validation of the potential new drought index. 209 

2.5. Agriculture statistics 210 

We obtain the state-level and county-level corn and soybean yield data from 1981 to 2013 from 211 

USDA’s NASS Quick Stats tools (USDA, 2017). The crop data used here do not differentiate 212 

irrigated yield and non-irrigated yield. We used corn and soybean yield to validate and test the 213 

potential use of the new index.  214 

3. Methods 215 
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3.1. Scaled drought indices 216 

Monthly precipitation (PCP), soil moisture (SM), NDVI, and land surface temperature (LST) 217 

were scaled according to their historical minimum and maximum values in each pixel following 218 

Kogan (1995a) and Kogan (1995b) (Table 2). Scaling NDVI can separate climate variability 219 

from ecosystem components (Kogan, 1995b). Scaling climate variables can discriminate the 220 

weather and climate variability from spatial heterogeneity. For each pixel, the scaling process 221 

was also performed for each month since the climate conditions and vegetation states are not 222 

homogenous across months. For each pixel, the historical maximum NDVI, precipitation, and 223 

soil moisture values are scaled to 1 to indicate the wettest case; the historical minimum NDVI, 224 

precipitation, and soil moisture are scaled to 0 to indicate the driest case. The LST was used to 225 

provide additional information for vegetation stress and to determine temperature-related 226 

vegetation stress (Kogan, 1995b). Contrary to other variables, in the warm season, high 227 

temperature indicates mostly unfavorable or drought conditions, while low temperature indicates 228 

mostly favorable conditions (Kogan, 1995b). Thus, the maximum LST is scaled to 0 and the 229 

minimum LST is scaled to 1. The scaling method can make those variables representing drought 230 

conditions comparable across space and time that higher scaled values indicate relative wetter 231 

conditions and lower scaled values indicate drier conditions. These four monthly variables (PCP, 232 

SM, NDVI, and LST) are linearly combined using different weights to form a new agriculturally-233 

based drought index: Integrated Scaled Drought Index (ISDI). The calculation of ISDI are based 234 

on all grid cells across the US. 235 

 236 

Table 2 Formulas of scaled drought indices 237 

Drought Indices Formula 
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Scaled NDVI (VCI) (NDVI – NDVImin) / (NDVImax – NDVImin) 

Scaled LST (LSTmax - LST) / (LSTmax – LSTmin) 

Scaled PCP (PCP – PCPmin) / (PCPmax – PCPmin) 

Scaled SM (SM – SMmin) / (SMmax – SMmin) 

ISDI α * Scaled NDVI + β * Scaled LST + γ * Scaled PCP + λ * Scaled SM 

Where NDVI represents Normalized Difference Vegetation Index from GIMMS AVHRR NDVI dataset; LST, PCP, 

and SM represent land surface temperature, precipitation, and soil moisture from NARR dataset; α, β, γ, and λ 

represent the weights of single scaled variable to form the Integrated Scaled Drought Index (ISDI) and α + β + γ + λ 

= 1; NDVImin, LSTmin, PCPmin, and SMmin indicate the minimum values of NDVI, land surface temperature, 

precipitation, and soil moisture for each pixel and each month; NDVImax, LSTmax, PCPmax, and SMmax indicate the 

maximum values of NDVI, land surface temperature, precipitation, and soil moisture for each pixel and each month. 

 238 

NARR data are in GRIB format on a Lambert-conformal grid.  Climate variables from NARR 239 

were resampled using piecewise linear interpolation to the spatial resolution of 1/12° lat/lon as 240 

GIMMS NDVI. NARR data and AVHRR NDVI data were all projected to UTM Zone 14N. 241 

3.2. Correlation analysis with in-situ drought indices 242 

We systematically created fifteen different sets of weights for four variables (PCP, SM, NDVI, 243 

and LST). We determined optimum weights by performing correlation analysis between ISDI of 244 

different weights and multiple in-situ drought indices – Palmer Z-index, PDSI, PMDI, 1-month 245 

SPI, 2-month SPI, 3-month SPI, 6-month SPI, 9-month SPI and 12-month SPI – at the climate 246 

divisional scale. NARR data and AVHRR NDVI data were spatially averaged over 344 climate 247 

divisions to facilitate correlation analysis between in-situ drought indices and ISDI of different 248 

weights. Two coastal climate divisions (0807: Keys in Florida and 2803: Coastal in New Jersey) 249 

do not have soil moisture information from NARR data and are excluded from the testing and 250 
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validation process. In order to be comparable and consistent across space and time, the whole 251 

CONUS, from 1981 to present, share the same optimum weight. 252 

3.3. Correlation analysis with crop yield data 253 

Drought can have significant impacts on agriculture and crop yield variabilities are highly 254 

correlated with drought severity (Mishra & Cherkauer, 2010; Quiring & Papakryiakou, 2003; 255 

Trnka et al., 2007). Here, we used corn and soybean yield, to quantitatively validate the potential 256 

use of ISDI. State-level corn and soybean yield time series are detrended by locally weighted 257 

regression model (LOWESS) to remove the nonlinear and non-stationary increasing trend caused 258 

by technological advances (Lu, Carbone, & Gao, 2017). This detrending approach allows us to 259 

successfully separate out environmental and weather factors from other technological factors (Lu 260 

et al., 2017). Crop yield anomalies derived from this approach indicate the percentage of crop 261 

yield lower or higher than normal (Lu et al., 2017). We performed correlation analyses between 262 

corn/soybean yield anomalies and monthly ISDI during growing seasons (March through 263 

October) at the state level to evaluate the performance of the new drought index. Corn has five 264 

major phonological stages: emerged, silking, dough, dent, and mature and soybean has four 265 

major phonological stages: emerged, blooming, setting pods, and dropping leaves (USDA, 2009). 266 

Yield sensitivity to drought varies with stage. ISDI values were extracted from pixels of land 267 

cover types: grassland/herbaceous, pasture/hay, and cultivated crops, from NLCD 2001 and were 268 

then spatially averaged for each state. 269 

3.4 Empirical validation with maps of USDM, VegDRI, and Gridded SPI from PRISM 270 

ISDI with optimum weights were visually compared with United States Drought Monitor 271 

(USDM) maps and Vegetation Response Index (VegDRI) maps for empirical validation and 272 

assessment. The archives of USDM maps from 2000 to present are available from the National 273 
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Drought Mitigation Center (http://droughtmonitor.unl.edu/). The USDM map is based on climate 274 

indices, numerical models, and the inputs of regional and local experts, which is not a strictly 275 

quantitative product, but a blend of science and subjectivity (Svoboda et al., 2002). The archives 276 

of VegDRI maps from 2009 to present are also available from the National Drought Mitigation 277 

Center (http://vegdri.unl.edu/). VegDRI integrates traditional drought indicators (e.g., PDSI and 278 

SPI) and NDVI with other biophysical information to monitor vegetation responses to drought 279 

conditions using a data mining technique (Brown, Wardlow, Tadesse, Hayes, & Reed, 2008). 280 

Since the USDM and VegDRI maps are created weekly, we used the end of month maps for 281 

comparison. Further, ISDI maps were also visually compared with gridded monthly SPI3 maps 282 

for empirical validation. We calculated SPI values across CONUS using 4-km gridded PRISM 283 

(Parameter-elevation Relationships on Independent Slopes Model) precipitation dataset (Daly et 284 

al., 2008) from 1895 to 2014 as an in-situ reference of spatial variability of drought severity. We 285 

computed SPI values following the method of McKee et al. (1993), modeling precipitation 286 

accumulations of different time scales with a gamma distribution. The flow chart of research 287 

method is shown in Figure 1. 288 
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 289 

Fig. 1 Flow chart of research methods 290 

4. Results and discussion 291 

4.1. Correlation with in-situ drought indices 292 

Table 3 Averaged correlation coefficients between in-situ drought indices and scaled LST, scaled 293 

PCP, scaled SM, and scaled NDVI over 342 climate divisions. The highest averaged correlation 294 

coefficient for each in-situ drought index (each column) is shown in bold. 295 

  Correlation coefficients 

  Z-index PDSI PMDI SPI1 SPI2 SPI3 SPI6 SPI9 SPI12 

Scaled NDVI 0.011 0.105 0.118 -0.027 0.068 0.103 0.104 0.132 0.141 

Scaled LST 0.373 0.382 0.388 0.217 0.278 0.298 0.306 0.272 0.252 

Scaled PCP 0.850 0.468 0.446 0.899 0.675 0.570 0.404 0.329 0.291 

Scaled SM 0.372 0.650 0.704 0.256 0.436 0.515 0.629 0.664 0.646 

 296 
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Table 3 shows the averaged correlation coefficients between in-situ drought indices and scaled 297 

LST, scaled PCP, scaled SM, and scaled NDVI for 342 climate divisions.  298 

Scaled PCP shows higher correlation with the Palmer Z-index and shorter-duration SPI values 299 

(i.e., 1-month, 2-month, and 3-month) than with other scaled drought indices. Thus, scaled PCP 300 

is especially appropriate for monitoring short-term drought. 301 

Scaled LST has higher correlation with PDSI, PMDI, and Z-index than SPIs because PDSI, 302 

PMDI, and Z-index are based on the supply-and-demand concept, which are calculated from 303 

precipitation, temperature and available water capacity (AWC) of the soil (Palmer, 1965), while 304 

SPIs are calculated only from precipitation data (McKee et al., 1993). 305 

Among all scaled variables, scaled SM shows the highest correlation with PDSI, PMDI, 6-month 306 

SPI, 9-month SPI, and 12-month SPI (Table 3). As the time scale of SPI increases from 1 to 9 307 

months, the correlation coefficient increases, which indicates that soil moisture responds slowly 308 

to precipitation variations. The high correlation between scaled SM and PDSI/PMDI suggests 309 

that scaled SM is especially appropriate for agricultural drought monitoring, since PDSI and its 310 

variation, PMDI, were considered to be useful primarily for agricultural drought and other water 311 

uses that are sensitive to soil moisture (Guttman, 1998). 312 

Generally, scaled NDVI (VCI) is not closely correlated with in-situ drought indices as other 313 

scaled variables (Table 3), because in-situ drought indices are mainly calculated from 314 

precipitation and temperature data and less directly convey vegetation information, while scaled 315 

NDVI reveals more information about drought influences on photosynthetic capacity of 316 

vegetation canopy, greenness level, leaf area index, and biomass. Among all in-situ drought 317 

indices, scaled NDVI shows higher correlation with PMDI, PDSI, and SPI of longer time scale 318 

(i.e., 3-month, 6-month, 9-month, and 12-month). The correlation coefficient increases as the 319 
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time scale of SPI increases from 1-month to 12-month, an expected finding because of the lag of 320 

vegetation response to precipitation deficit. 321 

We used PDSI to demonstrate the spatial variation of the correlations between scaled variables 322 

and in-situ drought indices (Fig. 2) because PDSI is very suitable for agricultural drought 323 

monitoring. The correlation coefficients between PDSI and scaled SM are higher than other 324 

scaled variables. With respect to the spatial variation, the scaled PCP, scaled LST, and scaled 325 

SM do not show any significant spatial patterns with PDSI over precipitation gradients. By 326 

contrast, an obvious spatial pattern exists for scaled NDVI (VCI) – correlation values with PDSI 327 

are higher in drier areas and lower in wetter areas (Fig. 2) because vegetation is more susceptible 328 

to drought variability in drier areas. 329 

Overall, scaled SM provides valuable information for drought monitoring in addition to SDCI 330 

(combination of scaled NDVI, scaled LST, and scaled PCP) proposed by Rhee et al. (2010). 331 

 332 

Fig. 2. Spatial variation of Pearson correlation coefficients between PDSI and scaled land surface 333 

temperature (LST), scaled precipitation (PCP), scaled soil moisture (SM), and scaled NDVI 334 

 335 
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4.2. Optimal Integrated Scaled Drought Index (ISDI) 336 

We tested 15 systematic sets of weights to find and derive an optimal Integrated Scaled Drought 337 

Index (ISDI) (Table 4). Correlation analyses were performed between monthly in-situ drought 338 

indices and ISDI with different sets of weights. The highest three correlation coefficients for 339 

each in-situ drought index (each column) were highlighted (Table 4). The correlation coefficients 340 

are all statistically significant over 342 climate divisions between different in-situ drought 341 

indices and ISDIs (p-value < 0.01). Weight set 3 shows a particularly high correlation with the Z-342 

index and 1-, 2-, and 3-month SPI values. Weight set 4 shows especially higher correlation with 343 

PDSI, PMDI and 6-, 9-, and 12-month SPI values. Weight set 9 shows higher correlation with 344 

PDSI, PMDI, and both shorter and longer time scale SPI (i.e., 2-month, 3-month, 6-month, 9-345 

month, and 12-month). It shows the highest correlation with PDSI and 3-month SPI among all 346 

weights. PDSI and 3- and 6-month SPI are especially suitable for monitoring agricultural drought 347 

(Rouault & Richard, 2003). Thus, the linear combination of scaled LST, scaled PCP, scaled SM, 348 

and scaled NDVI with the weight set 9 (LST=1/6, PCP=1/3, SM=1/3, and NDVI=1/6) is selected 349 

as the optimal Integrated Scaled Drought Index (ISDI). 350 

We compared the performance of ISDI with VHI (Table 4). ISDI shows much higher correlation 351 

with in-situ drought indices than VHI. We also compare the performance of ISDI with SDCI. 352 

Originally, SDCI uses MODIS and TRMM data, and here we alternatively used AVHRR and 353 

NARR data. Except for Z-index and 1-month SPI, ISDI shows higher correlation with in-situ 354 

drought indices (e.g., PDSI, PMDI, 2-month SPI, 3-month SPI, 6-month SPI, 9-month SPI, and 355 

12-month SPI) than SDCI. Thus, ISDI generally performs better than both VHI and SDCI to 356 

correlate with in-situ drought indices. 357 

 358 



19 
 

Table 4 Averaged correlation coefficients between ISDI with 15 sets of weights and in-situ 359 

drought indices over 342 climate divisions. The highest three correlation coefficients for each in-360 

situ drought index (each column) and the highest three sets of weights are shown in bold. 361 

 
Weights Correlation coefficients 

NUM 
Scaled 

LST 

Scaled 

PCP 

Scaled 

SM 

Scaled 

NDVI 
Z-index PDSI PMDI SPI1 SPI2 SPI3 SPI6 SPI9 SPI12 

1 1/4 1/4 1/4 1/4 0.697 0.692 0.714 0.589 0.628 0.637 0.620 0.597 0.568 

2 2/5 1/5 1/5 1/5 0.642 0.641 0.659 0.509 0.558 0.572 0.561 0.533 0.504 

3 1/5 2/5 1/5 1/5 0.809 0.679 0.689 0.742 0.698 0.671 0.603 0.562 0.527 

4 1/5 1/5 2/5 1/5 0.633 0.720 0.754 0.516 0.604 0.637 0.662 0.657 0.629 

5 1/5 1/5 1/5 2/5 0.614 0.633 0.656 0.510 0.569 0.586 0.568 0.557 0.535 

6 1/3 1/3 1/6 1/6 0.760 0.658 0.668 0.663 0.644 0.628 0.575 0.531 0.497 

7 1/3 1/6 1/3 1/6 0.614 0.688 0.717 0.477 0.565 0.597 0.620 0.606 0.578 

8 1/3 1/6 1/6 1/3 0.597 0.616 0.635 0.467 0.532 0.552 0.540 0.521 0.497 

9 1/6 1/3 1/3 1/6 0.748 0.720 0.743 0.664 0.678 0.678 0.655 0.632 0.599 

10 1/6 1/3 1/6 1/3 0.751 0.650 0.662 0.683 0.661 0.643 0.578 0.546 0.517 

11 1/6 1/6 1/3 1/3 0.587 0.688 0.722 0.473 0.573 0.611 0.633 0.634 0.612 

12 2/7 2/7 2/7 1/7 0.723 0.702 0.723 0.615 0.641 0.646 0.628 0.600 0.567 

13 2/7 2/7 1/7 2/7 0.724 0.643 0.655 0.627 0.624 0.614 0.562 0.527 0.497 

14 2/7 1/7 2/7 2/7 0.584 0.671 0.702 0.449 0.548 0.585 0.605 0.598 0.574 

15 1/7 2/7 2/7 2/7 0.711 0.702 0.726 0.626 0.655 0.661 0.639 0.622 0.593 

VHI 1/2 0 0 1/2 0.308 0.368 0.380 0.161 0.263 0.299 0.303 0.292 0.283 

SDCI 1/4 1/2 0 1/4 0.833 0.558 0.547 0.798 0.670 0.603 0.472 0.407 0.372 

 362 

4.3. Validation using crop yield data 363 
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Corn is most sensitive to drought during the early reproductive stage (tasseling, silking, and 364 

pollination) (William L Kranz, Irmak, Van Donk, Yonts, & Martin, 2008). Droughts that occur 365 

during silking period can cause poor pollination and result in the greatest yields reduction 366 

(Berglund, Endres, & McWilliams, 2010; William L Kranz et al., 2008). Soybeans are most 367 

sensitive to drought during the mid- to late-reproductive stages: pod development and seed fill 368 

stages (Doss, Pearson, & Rogers, 1974; William L. Kranz & Specht, 2012). Droughts that occur 369 

during those periods can have the greatest impact on soybean yields potential, resulting in 370 

reduced number of seeds per pod and reduced seed size (William L. Kranz & Specht, 2012). 371 

We performed correlation analyses between ISDI values during growing seasons (March to 372 

October) and corn/soybean yield anomalies from 1981 to 2013 for validation of the potential use 373 

of ISDI. Corn yield anomalies are higher correlated with ISDI in June, July, and August than 374 

other months, with the highest correlation in July. This period corresponds most closely with the 375 

early reproductive stage (tasseling/silking) for corn in most states, which is the most critical 376 

month for corn growth. Soybean yield anomalies are closely correlated with ISDI in July, August, 377 

and September than other months, with the highest correlation in August. This period 378 

corresponds to the critical mid- to late-reproductive stages of soybean: pod development and 379 

seed fill stages. Drought can significantly influence corn and soybeans during these critical 380 

growing periods as shown by the significant linear correlation between ISDI and corn (Fig. 3) 381 

and soybean (Fig. 4) yield anomalies (all p-values<0.001) for the 12 states with the highest 382 

annual corn/soybean production from 1981 to 2013. We excluded the outlier points in 1993 in 383 

Figure 3 and Figure 4 for Illinois, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, 384 

South Dakota, and Wisconsin because from May to September of 1993, a major flooding 385 

occurred across those states along the Mississippi and Missouri rivers and their tributaries which 386 
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severely impacted the agricultural production (Boruff, 1994; Johnson, Holmes, & Waite, 2004) 387 

and the lower-than-normal yields were caused by the flooding and excessive wetness instead of 388 

droughts. In addition, we selected four representative drought years: 1983, 1988, 2002, and 2012 389 

to compare the spatial pattern of July/August ISDI and county-level corn/soybean yield 390 

anomalies, respectively. The county-level corn/soybean anomalies are calculated following the 391 

method of Lu et al. (2017). We find a very strong correspondence between July/August low ISDI 392 

values and lower-than-normal corn/soybean yield during those representative drought years (Fig. 393 

5). These results partially illustrate the effectiveness and robustness of this new agriculturally-394 

based drought index. 395 
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 396 

Fig. 3.  Scatterplots and correlations between corn yield anomalies and the Integrated Scaled 397 

Drought Index (ISDI) in July for the 12 states with the highest annual corn production from 1981 398 

to 2013 among all states: (a) Iowa, (b) Illinois, (c) Nebraska, (d) Minnesota, (e) Indiana, (f) Ohio, 399 

(g) Wisconsin, (h) South Dakota, (i) Kansas, (j) Missouri, (k) Michigan, and (l) Texas in the US 400 
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 401 

Fig. 4. Scatterplots and correlations between soybean yield anomalies and the Integrated Scaled 402 

Drought Index (ISDI) in August for the 12 states with the highest annual soybean production 403 

from 1981 to 2013 among all states: (a) Iowa, (b) Illinois, (c) Minnesota, (d) Indiana, (e) Ohio, (f) 404 

Missouri, (g) Nebraska, (h) Arkansas, (i) South Dakota, (j) Kansas, (k) Michigan, and (l) 405 

Mississippi in the US 406 
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 407 

Fig. 5. Spatial pattern of July/August Integrated Scaled Drought Index (ISDI) and corn/soybean 408 

yield anomalies in 1983, 1988, 2002, and 2012 in the US (the first column: July ISDI; the second 409 

column: corn yield anomalies; the third column: August ISDI; the fourth column: soybean yield 410 

anomalies). 411 

 412 

4.4. Empirical comparison with USDM maps and VegDRI maps 413 

ISDI shows the highest correlation with corn and soybean yield anomalies in July and August, 414 

respectively, the two months most critical for corn and soybean growth. USDM maps are 415 

available from 2000 to present and VegDRI maps are available from 2009 to present. So, we 416 

choose to do a year-to-year comparison between ISDI and USDM maps in July from 2000 to 417 

2013 and a year-to-year comparison between ISDI and VegDRI maps in August from 2009 to 418 

2013 for empirical validation of ISDI. Also, we used gridded 3-month SPI maps calculated from 419 

PRISM data as an in-situ drought reference, since the time scale of 3-month is considered very 420 

appropriate for agricultural drought monitoring (Rouault & Richard, 2003). 421 
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Generally, the annual changes and spatial distribution of ISDI agree well with USDM maps in 422 

July from 2000 to 2013. The ISDI could provide much more detailed information when 423 

compared with USDM (Fig. 6). USDM is not a strictly quantitative product but the state-of-the-424 

art blend of science and subjectivity including experts input (Svoboda et al., 2002), while ISDI is 425 

a completely quantitative product without expert inputs. The ISDI does not agree with USDM in 426 

earlier years (i.e., 2000 and 2001), but agrees very well in later years (Fig. 6). In 2000, ISDI 427 

detected a more severe drought west of the 100° W meridian and in the south of Texas than 428 

USDM did. In 2001, ISDI also detected a more severe drought in the south of Texas than the 429 

USDM did. Generally, ISDI shows better agreement with 3-month SPI calculated from PRISM 430 

than USDM in most years (Fig. 6). 431 

Overall, ISDI agrees quite well with VegDRI maps to show US drought conditions in August 432 

from 2009 to 2013 (Fig. 7). In 2009, ISDI and VegDRI both detected extreme and severe 433 

droughts in the coastal Northwest, the West, and the Southwest, and extreme drought in south 434 

Texas. In 2010, they both detected scattered drought conditions. In 2011, they both detected 435 

severe and extreme drought conditions in the South. In 2012, they both showed severe and 436 

extreme droughts across the entire United States. In 2013, they both detected drought condition 437 

in the Northwest, West, Southwest, and South. However, ISDI detected severe drought in the 438 

Upper Midwest and Ohio Valley, but VegDRI did not. The severe drought conditions shown in 439 

those areas from the 3-month SPI indicates the better performance of ISDI in 2013 (Fig. 7). 440 

These comparisons with USDM maps, VegDRI maps, and gridded 3-month SPI maps illustrate 441 

the effectiveness and robustness of ISDI. 442 

 443 
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 444 

Fig. 6. Comparisons between Integrated Scaled Drought Index (ISDI), gridded 3-month SPI from 445 

prism data, and the United States Drought Monitor (USDM) maps in July from 2000 to 2013. 446 

 447 
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 448 

Fig. 7. Comparisons between Integrated Scaled Drought Index (ISDI) and the Vegetation 449 

Drought Response Index (VegDRI) maps in August from 2009 to 2013. 450 

 451 

5. Conclusion 452 

This study successfully develops a new monthly agriculturally-based drought index, the 453 

Integrated Scaled Drought Index (ISDI) which integrates four components (scaled NDVI, scaled 454 

land surface temperature (LST), scaled precipitation (PCP), and scaled soil moisture (SM)) to 455 

account for interannual variability of drought during the longest possible time-frame of the 456 

satellite era. We used long-term satellite-based observations of vegetation conditions from 457 

GIMMS AVHRR NDVI (available from 1981 to present) and climate conditions from NECP 458 

North American Regional Reanalysis (NARR) data (available from 1979 to present) to calculate 459 
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the ISDI from 1981 to 2013 to make the long-term agricultural drought quantifications and 460 

measurements possible. Our results provide a long-term climatology of drought monitoring over 461 

the US which is beneficial for historical drought impacts assessment and future drought 462 

monitoring. 463 

This new drought index incorporates a range of important variables controlling agricultural 464 

drought process, especially as it integrates soil moisture, an important but infrequently observed 465 

in-situ variable. Among all scaled variables, scaled soil moisture shows the highest correlation 466 

with PDSI, PMDI, and SPI at longer time scales (i.e., 6-month, 9-month, and 12-month), which 467 

suggests that scaled soil moisture can provide valuable information to monitor agricultural 468 

drought. Among the four components in this new drought index, we highlight the significance of 469 

the soil moisture component in agricultural drought monitoring. The ISDI with optimum weights 470 

shows much higher correlations with in-situ drought indices than VHI. Except for the Z-index 471 

and 1-month SPI, ISDI shows higher correlation with in-situ drought indices (i.e., PDSI, PMDI, 472 

2-month SPI, 3-month SPI, 6-month SPI, 9-month SPI, and 12-month SPI) than SDCI. The ISDI 473 

performs better than VHI and SDCI to correlate with in-situ drought indices.  474 

This new monthly drought index measures agricultural drought in the long-term and over large 475 

regions in a consistent and quantitative fashion. This index adds a new tool to the current toolbox 476 

of available methods to monitor and assess agricultural drought conditions on a monthly time 477 

step. The results indicate that the ISDI can identify historical major drought events and show 478 

potential for future operational implementation in drought monitoring and assessment. ISDI 479 

shows highest correlations with corn yield anomalies in July, which corresponds to the early 480 

reproductive stage (tasseling/silking) of corn, and shows highest correlation with soybean yield 481 

anomalies in August, which corresponds to the pod development and seed fill stages of soybean, 482 
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periods when corn and soybean are most sensitive to water stress. There are significant linear 483 

correlations between ISDI and state-level corn and soybean yield anomalies. Additionally, a very 484 

strong spatial correspondence can be found between July/August low ISDI values and lower-485 

than-normal corn/soybean yield during the four representative drought years (i.e., 1983, 1988, 486 

2002, and 2012). Further, ISDI agrees very well with the two national-wide drought monitoring 487 

systems: USDM and VegDRI maps, and can detect year-to-year changes of drought conditions in 488 

the US. The above results all indicate a good performance of ISDI to monitor agricultural 489 

drought. This index can be generalized to incorporate other satellite data, numerical model 490 

simulations, or in-situ observations to monitor the agricultural drought, such as soil moisture data 491 

from Soil Moisture Active Passive (SMAP), precipitation data from Tropical Rainfall Measuring 492 

Mission (TRMM) or other precipitation radar data, temperature data from AVHRR and MODIS, 493 

NDVI data from MODIS, etc. 494 
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