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Mapping the agricultural drought based on the Iw@rga
AVHRR NDVI and North American Regional Reanalysis

(NARR) in the United States, 1981-2013

Abstract: To provide a long-term perspective of drought afaitity from 1981 to present, we
develop a new monthly agriculturally-based droughex called the Integrated Scaled Drought
Index (ISDI). This index integrates Normalized Brénce Vegetation Index (NDVI) from
Advanced Very High Resolution Radiometer (AVHRR}adéavailable from 1981 to present),
land surface temperature (LST), precipitation (PGP soil moisture (SM) data from North
American Regional Reanalysis (NARR) project (avadgafrom 1979 to present). This new
agriculturally-based drought index incorporates am@nt components controlling agricultural
drought, particularly soil moisture, for which tkegire limited in-situ observations through time
and across space. The optimum weights for each aoemp of the ISDI are determined by
correlation analysis with commonly used in-situ wdybt indices, such as the Palmer Drought
Severity Index (PDSI), the Palmer Modified Drougidex (PMDI), the Palmer’s Z-index, and
the Standardized Precipitation Index (SPI) at d#ifié time scales. Resulting ISDI maps are also
visually compared with United States Drought Monif@SDM) and Vegetation Drought
Response Index (VegDRI) maps for empirical valmatilSDI shows strong agreement with
these two national-wide drought monitoring systel881I also shows strong linear correlations
with corn yield anomalies in July and with soybg#id anomalies in August and strong spatial
correspondence with county-level corn/soybean yaidmalies during major drought events.
These results illustrate the robustness and usefsilof ISDI. This agriculturally-based drought

index integrates the benefits of numerical modedusation and remote sensing technology to
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account for interannual variability of drought fitve longest possible time-frame in the satellite
era. This long-term monthly drought index providetonger historical perspective of drought
impacts since 1981. It can be generalized to irmatp other satellite data or in-situ observation
and has the potential for operational drought nooimgy and assessment.

Keywords. Agricultural drought; Drought indices; Soil moisty AVHRR NDVI; Crop yield

anomalies

1. Introduction

Drought is a devastating, recurring, and widespreadural hazard with complicated
socioeconomic, environmental, and ecological imp&MS, 1997). Drought is a costly hazard
in the United States historically, in which ConsurReice Index (CPI) adjusted drought losses
exceeded 223.8 billion dollars from 1980-2016, ldygaccounting for 20% of all losses from
major weather events (NOAA, 2018). Within the agitieral sector, drought affects soil
moisture availability and contributes to crop fedlsi and pasture decline, posing risks on food
security.

Drought impacts depend on the timing, severity, dadation of the events, and on resilience.
Drought monitoring and early warning are criticat &gricultural production and risk adaptation
as effective drought quantification can mitigateskes. Of course, identifying and quantifying
drought events is difficult due to its complex ahderse nature, reflected in its many definitions
(e.g., meteorological, agricultural, hydrologicahd socioeconomic), and the varying criteria
used to estimate its severity (AMS, 1997; Heim,20€CC, 2001). Appropriate quantification

of drought for a variety of applications (e.g., iagitural drought or hydrological drought)
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requires consideration of a wide range of contmgutprocesses (Sheffield, Goteti, Wen, &
Wood, 2004; Wilhite, 2000).

Drought monitoring mainly has been based on in-dmaught indices calculated from station-
based, or areally-based meteorological data. Thed?®rought Severity Index (PDSI) is based
on the supply-and-demand concept of water balagoat®n using precipitation, temperature,
and available water capacity of the soil (Palm8g5). The PDSI and its variations, such as the
Palmer Z index (Palmer, 1965), Palmer Hydrologiouht Index (PHDI) (Palmer, 1965), and
Palmer Modified Drought Index (PMDI) (HeddinghausS&bol, 1991) have been widely used
for drought assessment and water resources manageemsions. Shafer and Dezman (1982)
developed the Surface Water Supply Index (SWSintmitor abnormalities in surface water
supply using historical records of streamflow, sn@ack, precipitation, and reservoir
components. The Standardized Precipitation Ind&)(®as developed to quantify precipitation
deficit for different time scales based on onlygpéation data (McKee, Doesken, & Kleist,
1993). Compared with PDSI, SPI requires less d#ag, flexible time scales, and is spatially
invariant (Guttman, 1998). Recently, Vicente-SemtaBegueria, and Lépez-Moreno (2010)
proposed the Standardized Precipitation Evapotraigm Index (SPEI) based on precipitation
and temperature data, which incorporates an evapsgiration component into the calculation
of SPI and is appropriate for detecting droughtnges in the context of global warming
(Vicente-Serrano et al., 2010).

Satellite remote sensing data have also been wseplantify drought when in-situ weather
station observations are not available (Kogan, a98hee, Im, & Carbone, 2010), resulting in
several remote-sensing-based drought indices. Amthagm, the Normalized Difference

Vegetation Index (NDVI) developed by Rouse, HaasheB, and Deering (1974) has been
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widely for drought monitoring (Peters et al., 200QDVI is the normalized reflectance
difference between the near-infrared (NIR) band weistle red band since the chlorophyll A
and B within vegetation leaf have peak absorptiathiw the visible (red) portion of the
electromagnetic spectrum and spongy mesophyll belle an optimum reflection region in NIR
wavelengths. NDVI can effectively reflect the plojepgically functioning surface greenness
level andhigher NDVI values represent greater photosynttegacity of the vegetation canopy
(Tucker, 1979). However, NDVI contains both weattedated and ecosystem components
(Kogan, 1995a). Kogan (1995a) developed the Vegetafondition Index (VCI) by linearly
scaling NDVI values from 0 to 1 for each grid dellseparate weather-related components from
ecosystem components. To distinguish drought effécim other environmental factors (e.g.,
excessive wetness, pest, plant disease), relatedtelinformation from satellite observation or
in-situ observation could be integrated with ND\Ata (Kogan, 1995b). In addition to VCI,
thermal band based Temperature Condition Index )(W@ls developed to provide additional
information on land surface temperature to distisigwegetation stress caused by drought
events from other factors (Kogan, 1995b). The lirmambination of VCI and TCI results in a
Vegetation Health Index (VHI), reflecting both teenature and precipitation conditions (Kogan,
1995b).

With the development of hyperspectral remote senssuch as the Moderate Resolution
Imaging Spectroradiometer (MODIS), additional remsénsing-based drought indices have
been developed. For example, B. Gao (1996) proptheediormalized Difference Water Index
(NDWI) to detect moisture status of vegetation ggnbased on the Near Infrared (NIR) channel
providing information on vigor of vegetation viaghi optimum reflection by spongy Mesophyll

cells and the Shortwave Infrared (SWIR) channeligiing information on changes of water
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content. Based on NDVI and NDWI, Gu, Brown, Verdeamd Wardlow (2007) proposed
Normalized Difference Drought Index (NDDI) and demtrated a quicker and stronger
response to summer drought compared with NDVI aBd Wang and Qu (2007) developed
the Normalized Multi-band Drought Index (NMDI) basen the sensitivity findings that the two
MODIS SWIR bands respond differently to soil morstland vegetation moisture variations.
NMDI uses NIR band centered at 860 nm channel (&gnas the reference and uses the two
water absorption SWIR channels centered at 164Qbamd 6) and 2130 nm (band 7) as the soil
moisture and vegetation moisture sensitive bangedsely (Wang & Qu, 2007). NMDI
provided solutions to separate vegetation moidsta@ soil moisture by amplifying one signal
and minimizing the other (Wang & Qu, 2007).

More recently, Rhee et al. (2010) proposed the é8c8lrought Condition Index (SDCI) for
monitoring agricultural drought in both arid andniid regions. This index combines three
standardized scaled remote sensing variables tgetithe Normalized Difference Vegetation
Index (NDVI), the land surface temperature (LSOnirMODIS sensors, and precipitation from
the Tropical Rainfall Measuring Mission (TRMM) skite. Through validations against in-situ
drought indices and United States Drought MonittdSDM) maps, Rhee et al. (2010)
demonstrated that SDCI performed better than NDWIDI, NDDI, and VHI in both arid and

humid regions. The formulas of several remote sgndrought indices are shown in Table 1.

Table 1 Formulas of remote sensing drought indices

Drought Indices Formula

NDVI (Normalized Difference Vegetation Index (pnir —prep) / (PNIR + PRED)

VCI (Vegetation Condition Index) (NDVI — NDViln) / (NDVImax— NDVlnin)
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TCI (Temperature Condition Index) ddx- LST) / (LSTmax— LSTmin)

VHI (Vegetation Health Index) a*VCIl+ B*TCI

NDW!I (Normalized Difference Water Index) PNIR —pswir) / (PNIR T+ PswiR)

NDDI (Normalized Difference Drought Index) (NDVINDWI) / (NDVI + NDWI)

NMDI (Normalized Multi-band Drought Index) PR — (P1640nm— P2130nm) / (PNIR + (P1640nm
— P2130nm)

SDCI (Scaled Drought Condition Index) (1/4) * schleST + (2/4) * scaled TRMM

+ (1/4) * scaled NDVI

Wherep represents spectral reflectanaeandf3 represent the weights.

Vegetation indices naturally lend themselves tocatjural drought measurement, but could be
enhanced with information from other variables, hswas precipitation, evapotranspiration,
temperature, and soil moisture (AMS, 2013). Soiistwe decline is a very important indicator
of agricultural drought as it reflects antecedergcppitation, evapotranspirative losses, and
determines available water supply for healthy pgnotvth (AMS, 1997; Keyantash & Dracup,
2002; WMO, 1975). Yet, soil moisture is one of teast observed variables in the US and
elsewhere globally (Sheffield et al., 2004). Withauwcomprehensive, large-scale, and long-term
network of in-situ soil moisture measurement (Kagah & Dracup, 2002) and shallow
observation depths of remote sensing based sostarei conditions (Leeper, Bell, Vines, &
Palecki, 2016), the use of simulated soil moistineen numerical models provides a viable
alternative (Sheffield et al., 2004). Numerical ralsd can compute the soil moisture by
simulating the water balance of the soil columnngsprecipitation, air temperature, soil

temperature, soil porosity, and infiltration asutgp(Keyantash & Dracup, 2002). The commonly
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used and high-resolution reanalysis dataset, NArtterican Regional Reanalysis (NARR)
simulates soil moisture and serves as a good saidrcéormation for long-term soil moisture
conditions. Leeper et al. (2016) demonstrated sbdtmoisture data from NARR could capture
the timing, intensity, and spatial extent of 201@&ught using standardized soil moisture
anomalies, when compared against in-situ soil mmesbbservations from the United States
Climate Reference Network (USCRN). In the Unitecit&d, there are several nation-wide
drought monitoring systems, such as the UnitedeStBirought Monitor (USDM), and related
indices (e.g., Vegetation Drought Response IndeagDRI) and the Evaporative Stress Index
(ESI)). These drought monitoring systems have piedinational wide drought measurements
since 2000.

To cover the longest time-frame during the satelkra, to learn more about year-to-year
variability in growing conditions and the consequenpacts on agriculture, and to incorporate
one of the most important variables in agricultuhaught modeling, we develop a new monthly
agriculturally-based drought index that integregatellite-based observations of vegetation state
and climate information from reanalysis dataset. ¥8e the NDVI from NOAA’s Advanced
Very High Resolution Radiometer (AVHRR) sensordket advantage of this longest NDVI time
series from 1981 to present and its large arearagee We combine this with land surface
temperature (LST), precipitation (PCP), and soilisnwe (SM) data from the NCEP NARR
project (available 1979 to present), producing sl consistently blended, agriculturally-based
drought index that accounts for interannual valiigbior the longest possible time-frame during
the satellite era. Such an index can not only pl@vnsights for historical drought impacts

assessment, but also be generalized to incorpothés satellite data or in-situ observation. In
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addition to putting past droughts in historical @, our new index can be applied to current or

future agricultural drought monitoring.

2. Data

2.1. North American Regional Reanalysis (NARR) data

Precipitation, land surface temperature, and wtdlmoisture content data were extracted from
NARR data (Mesinger et al., 2006). The NARR datawgydated monthly by NOAA'’s National
Centers for Environmental Prediction (NCEP) and H#&RR data can be accessed from the
National Center for Atmospheric Research (NCAR) dgesh Data Archive (RDA)
(https://rda.ucar.edu/datasets/ds608.0/). NARR risgional reanalysis for North America, that
contains temperatures, precipitation, wind, soilistwe, radiation, evaporation, etc. (Mesinger
et al., 2006). This dataset provides a long-teimatiology spanning from 1979 to present over
North America at a spatial resolution of 32 km a&muhporal resolution of 3 hours. NARR uses a
recently operational version of the NCEP regioni@ &Eodel and the Noah land-surface model
and assimilates high-quality observational dateuciing radiosondes, hourly precipitation (with
PRISM correction), surface observations, aircrgdéipstationary satellites, etc. (Mesinger et al.,
2006). This dataset is superior to NCEP/NCAR GldRahnalysis (GR), especially due to an
advance in modeling and additional assimilatiorpi@cipitation and radiance (Mesinger et al.,
2006). NARR has the potential to represent extrements, such as floods, droughts, and their
driving mechanisms (Mesinger et al., 2006).

NARR has been used widely to understand weatheclandte variability across North America.
Ruiz-Barradas and Nigam (2006) used NARR data vestigate the hydroclimate variability

over the Great Plains. Mo and Chelliah (2006) uBRR products to produce PMDI to
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monitor drought in the US. Karnauskas, Ruiz-Barsaddigam, and Busalacchi (2008) used
NARR and 40-yr European Centre for Medium-Range tWayaForecasts (ECMWF) Re-
Analysis (ERA-40) data to construct a PDSI dataéeoni, Tai, and Gochis (2009) used NARR
to investigate the mechanisms and effects of Instil moisture on precipitation, streamflow,
and evapotranspiration during the monsoon in Newitée Becker, Berbery, and Higgins (2009)
used NARR to examine the seasonal characteristicprecipitation and related physical
mechanisms over the US. Choi, Kim, Rasmussen, amré/ (2009) used the NARR
temperature and precipitation data for hydrologmmaldeling with Semi-distributed Land Use-
based Runoff Processes (SLURP). P. Gao, Carbodeian (2016) used NARR data to assess
and evaluate the performance of North American &egdiClimate Change Assessment Program
(NARCCAP) in simulating the precipitation extremeshe US.

2.2. Remote sensing data

NDVI data were obtained from the Global Inventorgiitoring and Modeling System (GIMMS)
project to represent the vigor, robustness, andtgsijathetic capacity of vegetation. The
GIMMS project carefully assembles NDVI data fronffelient AVHRR sensors and accounts for
different deleterious effects, such as calibratiosses, orbital drift, and volcanic eruptions
(Pinzon & Tucker, 2014). The third generation GIMMMDVI from AVHRR sensors is
bimonthly spanning from the period from July 19810tecember 2013 with a spatial resolution
of 1/12° lat/lon across the globe (Pinzon & Tuck2014). The GIMMS NDVI dataset was
downloaded from the Ecological Forecasting Lab afASKW Ames Research Center
(https:/lecocast.arc.nasa.gov/data/pub/gimms/3g.Vihe bimonthly NDVI was aggregated into
monthly.

2.3. Land use/cover data
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The National Land Cover Database (NLCD) productih \80m spatial resolution were used to
extract the land areas of Grassland/Herbaceouss(lh), Pasture/Hay (class 81), and Cultivated
Crops (class 82). We used the NLCD 2001 (Homel.e2@07) database because this baseline is
in the middle of our study period. Wickham, Stehm@ry, Smith, and Homer (2010) used a
sampling approach to assess the accuracy of NLAR 28d reported that the overall thematic
accuracy of Anderson Level Il and Level | were 78.@nd 85.3% respectively. Wickham et al.
(2017) reported that the single-date overall acgasaof NLCD 2011, 2006, and 2001 were
close: respectively 82%, 83%, and 83% at Levelnld 88%, 89%, and 89% at Level I. The
purpose of NLCD here is to extract the values ef tlew drought index covering those three
land use types, which are used for validation efitlew drought index via correlation analysis
with the crop yield anomalies in section 4.3.

2.4. In-situ drought index

We obtained in-situ monthly drought indices, inchgdthe PDSI, PMDI, Palmer Z index, 1-
month SPI, 2-month SPI, 3-month SPI, 6-month Shddth SPI, and 12-month SPI from 1895
to present from NOAA's National Centers for Envinoental Information (NCEI)
(ftp://ftp.ncdc.noaa.gov/). These indices at thienate divisional spatial scale were primarily
used for derivation and validation of the potentiedv drought index.

2.5. Agriculture statistics

We obtain the state-level and county-level corn sogbean yield data from 1981 to 2013 from
USDA’s NASS Quick Stats tools (USDA, 2017). Thegmata used here do not differentiate
irrigated yield and non-irrigated yield. We usedrcand soybean yield to validate and test the

potential use of the new index.

3. Methods

10
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3.1. Scaled drought indices

Monthly precipitation (PCP), soil moisture (SM), ND and land surface temperature (LST)
were scaled according to their historical minimumd anaximum values in each pixel following
Kogan (1995a) and Kogan (1995b) (Table 2). ScahiigVl can separate climate variability
from ecosystem components (Kogan, 1995b). Scallmgate variables can discriminate the
weather and climate variability from spatial hetgoeity. For each pixel, the scaling process
was also performed for each month since the clinatelitions and vegetation states are not
homogenous across months. For each pixel, thericstonaximum NDVI, precipitation, and
soil moisture values are scaled to 1 to indicagewettest case; the historical minimum NDVI,
precipitation, and soil moisture are scaled to @hthcate the driest case. The LST was used to
provide additional information for vegetation steand to determine temperature-related
vegetation stress (Kogan, 1995b). Contrary to otyemables, in the warm season, high
temperature indicates mostly unfavorable or drowghiditions, while low temperature indicates
mostly favorable conditions (Kogan, 1995b). Thuse maximum LST is scaled to O and the
minimum LST is scaled to 1. The scaling method wake those variables representing drought
conditions comparable across space and time tighthiscaled values indicate relative wetter
conditions and lower scaled values indicate drgrditions. These four monthly variables (PCP,
SM, NDVI, and LST) are linearly combined using drént weights to form a new agriculturally-
based drought index: Integrated Scaled DroughtxritDI). The calculation of ISDI are based

on all grid cells across the US.

Table 2 Formulas of scaled drought indices

Drought Indices Formula

11
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Scaled NDVI (VCI)  (NDVI— NDVhyin) / (NDVImax— NDViin)

Scaled LST (LShax- LST) / (LSTmax— LSTmin)

Scaled PCP (PCP — PGR / (PCRyax— PCRuin)

Scaled SM (SM — SMn) / (SMnax— SMnin)

ISDI a * Scaled NDVI +3 * Scaled LST 4y * Scaled PCP A * Scaled SM

Where NDVI represents Normalized Difference Vedetatndex from GIMMS AVHRR NDVI dataset; LST, PCP,
and SM represent land surface temperature, pratigpit and soil moisture from NARR dataset; 3, y, andA
represent the weights of single scaled variabferim the Integrated Scaled Drought Index (ISDI) and3 +y+A

= 1; NDVlyin, LSThin, PCRyin, and SM,, indicate the minimum values of NDVI, land surfacamperature,
precipitation, and soil moisture for each pixel aath month; NDVla, LSThaw PCRiax @nd SMacindicate the

maximum values of NDVI, land surface temperaturecipitation, and soil moisture for each pixel asth month.

NARR data are in GRIB format on a Lambert-conforgad. Climate variables from NARR
were resampled using piecewise linear interpolatothe spatial resolution of 1/12° lat/lon as
GIMMS NDVI. NARR data and AVHRR NDVI data were aliojected to UTM Zone 14N.

3.2. Correlation analysis with in-situ drought ices

We systematically created fifteen different setsvefghts for four variables (PCP, SM, NDVI,
and LST). We determined optimum weights by perfogntorrelation analysis between ISDI of
different weights and multiple in-situ drought inds — Palmer Z-index, PDSI, PMDI, 1-month
SPI, 2-month SPI, 3-month SPI, 6-month SPI, 9-m@#h and 12-month SPI — at the climate
divisional scale. NARR data and AVHRR NDVI data wepatially averaged over 344 climate
divisions to facilitate correlation analysis betwaa-situ drought indices and ISDI of different
weights. Two coastal climate divisions (0807: Key$lorida and 2803: Coastal in New Jersey)

do not have soil moisture information from NARR aland are excluded from the testing and

12
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validation process. In order to be comparable anbistent across space and time, the whole
CONUS, from 1981 to present, share the same optimeight.

3.3. Correlation analysis with crop yield data

Drought can have significant impacts on agricultared crop yield variabilities are highly
correlated with drought severity (Mishra & Cherkgu2010; Quiring & Papakryiakou, 2003;
Trnka et al., 2007). Here, we used corn and soyledah, to quantitatively validate the potential
use of ISDI. State-level corn and soybean yielcetigeries are detrended by locally weighted
regression model (LOWESS) to remove the nonlinedrreon-stationary increasing trend caused
by technological advances (Lu, Carbone, & Gao, 20Ifis detrending approach allows us to
successfully separate out environmental and weédlctrs from other technological factors (Lu
et al., 2017). Crop yield anomalies derived frons thpproach indicate the percentage of crop
yield lower or higher than normal (Lu et al., 201We performed correlation analyses between
corn/soybean yield anomalies and monthly ISDI dyrgrowing seasons (March through
October) at the state level to evaluate the perdoca of the new drought index. Corn has five
major phonological stages: emerged, silking, dowgnt, and mature and soybean has four
major phonological stages: emerged, blooming,rsgtiods, and dropping leaves (USDA, 2009).
Yield sensitivity to drought varies with stage. IS&alues were extracted from pixels of land
cover types: grassland/herbaceous, pasture/haygudiineated crops, from NLCD 2001 and were
then spatially averaged for each state.

3.4 Empirical validation with maps of USDM, VegDRhd Gridded SPI from PRISM

ISDI with optimum weights were visually comparedtiwiUnited States Drought Monitor
(USDM) maps and Vegetation Response Index (VegDRdps for empirical validation and

assessment. The archives of USDM maps from 20@0e®ent are available from the National
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Drought Mitigation Center (http://droughtmonitorledu/). The USDM map is based on climate
indices, numerical models, and the inputs of regli@nd local experts, which is not a strictly
guantitative product, but a blend of science argjesiivity (Svoboda et al., 2002). The archives
of VegDRI maps from 2009 to present are also abkalérom the National Drought Mitigation

Center (http://vegdri.unl.edu/). VegDRI integratesditional drought indicators (e.g., PDSI and
SPI) and NDVI with other biophysical information taonitor vegetation responses to drought
conditions using a data mining technique (Brown,rilav, Tadesse, Hayes, & Reed, 2008).
Since the USDM and VegDRI maps are created weekdyused the end of month maps for
comparison. Further, ISDI maps were also visuatijmpared with gridded monthly SPI3 maps
for empirical validation. We calculated SPI valwEsoss CONUS using 4-km gridded PRISM
(Parameter-elevation Relationships on IndependepeS Model) precipitation dataset (Daly et
al., 2008) from 1895 to 2014 as an in-situ refeeeoicspatial variability of drought severity. We

computed SPI values following the method of McKéeak (1993), modeling precipitation

accumulations of different time scales with a gandisribution. The flow chart of research

method is shown in Figure 1.
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290 Fig. 1 Flow chart of research methods
291 4. Results and discussion

292 4.1. Correlation with in-situ drought indices
293 Table 3 Averaged correlation coefficients betweesitu drought indices and scaled LST, scaled
294 PCP, scaled SM, and scaled NDVI over 342 climatesidins. The highest averaged correlation

295 coefficient for each in-situ drought index (eackuoan) is shown in bold.

Correlation coefficients

Z-index PDSI PMDI  SPI1 SPI2 SPI3 SPI6 SPI9 SPI12

Scaled NDVI  0.011 0.105 0.118 -0.027 0.068 0.103 104. 0.132 0.141

Scaled LST 0.373 0.382 0.388 0.217 0.278 0.298 60.300.272 0.252

Scaled PCP  0.850 0.468 0.446 0.899 0.675 0.570 0.404 0.329 0.291

Scaled SM 0.372 0.650 0.704 0.256 0.436 0.515 0.629 0.664 0.646

296
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Table 3 shows the averaged correlation coefficibetsveen in-situ drought indices and scaled
LST, scaled PCP, scaled SM, and scaled NDVI for@#2ate divisions.

Scaled PCP shows higher correlation with the Palfgdex and shorter-duration SPI values
(i.e., 1-month, 2-month, and 3-month) than witheothcaled drought indices. Thus, scaled PCP
is especially appropriate for monitoring short-tedrought.

Scaled LST has higher correlation with PDSI, PMBid Z-index than SPIs because PDSI,
PMDI, and Z-index are based on the supply-and-dentmcept, which are calculated from
precipitation, temperature and available water ciyp#AWC) of the soil (Palmer, 1965), while
SPIs are calculated only from precipitation datzi{de et al., 1993).

Among all scaled variables, scaled SM shows thedsgcorrelation with PDSI, PMDI, 6-month
SPI, 9-month SPI, and 12-month SPI (Table 3). Astime scale of SPI increases from 1 to 9
months, the correlation coefficient increases, Whidicates that soil moisture responds slowly
to precipitation variations. The high correlatioetween scaled SM and PDSI/PMDI suggests
that scaled SM is especially appropriate for adtical drought monitoring, since PDSI and its
variation, PMDI, were considered to be useful pritlgdor agricultural drought and other water
uses that are sensitive to soil moisture (Guttrh8a8).

Generally, scaled NDVI (VCI) is not closely corrgdld with in-situ drought indices as other
scaled variables (Table 3), because in-situ droughkices are mainly calculated from
precipitation and temperature data and less dyrecthvey vegetation information, while scaled
NDVI reveals more information about drought inflaee on photosynthetic capacity of
vegetation canopy, greenness level, leaf area jnaea biomass. Among all in-situ drought
indices, scaled NDVI shows higher correlation wetDI, PDSI, and SPI of longer time scale

(i.e., 3-month, 6-month, 9-month, and 12-month)e Torrelation coefficient increases as the
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time scale of SPI increases from 1-month to 12-imoa expected finding because of the lag of
vegetation response to precipitation deficit.

We used PDSI to demonstrate the spatial variatfatheo correlations between scaled variables
and in-situ drought indices (Fig. 2) because PDxSVkery suitable for agricultural drought
monitoring. The correlation coefficients between3and scaled SM are higher than other
scaled variables. With respect to the spatial tianathe scaled PCP, scaled LST, and scaled
SM do not show any significant spatial patternshwiDSI over precipitation gradients. By
contrast, an obvious spatial pattern exists folescBDVI (VCI) — correlation values with PDSI
are higher in drier areas and lower in wetter a(Eap 2) because vegetation is more susceptible
to drought variability in drier areas.

Overall, scaled SM provides valuable information doought monitoring in addition to SDCI

(combination of scaled NDVI, scaled LST, and sc&&P) proposed by Rhee et al. (2010).

Scaled LST Scaled PCP

Pearson
Correlation

208
07
06
05
0.4
03
02
R/ . 0.1
o .
0.1
02

i 03
<-04

Scaled SM Scaled NDVI

Fig. 2. Spatial variation of Pearson correlatioeftioients between PDSI and scaled land surface

temperature (LST), scaled precipitation (PCP),extabil moisture (SM), and scaled NDVI
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4.2. Optimal Integrated Scaled Drought Index (ISDI)

We tested 15 systematic sets of weights to findderde an optimal Integrated Scaled Drought
Index (ISDI) (Table 4). Correlation analyses wessfgrmed between monthly in-situ drought
indices and ISDI with different sets of weights.eThighest three correlation coefficients for
each in-situ drought index (each column) were hggitéd (Table 4). The correlation coefficients
are all statistically significant over 342 climativisions between different in-situ drought
indices and ISDIs (p-value < 0.01). Weight set 8vsha particularly high correlation with the Z-
index and 1-, 2-, and 3-month SPI values. Weighédsshows especially higher correlation with
PDSI, PMDI and 6-, 9-, and 12-month SPI values.gheset 9 shows higher correlation with
PDSI, PMDI, and both shorter and longer time s&# (i.e., 2-month, 3-month, 6-month, 9-
month, and 12-month). It shows the highest cornatvith PDSI and 3-month SPI among all
weights. PDSI and 3- and 6-month SPI are espeaaltpble for monitoring agricultural drought
(Rouault & Richard, 2003). Thus, the linear comboraof scaled LST, scaled PCP, scaled SM,
and scaled NDVI with the weight set 9 (LST=1/6, RCRB, SM=1/3, and NDVI=1/6) is selected
as the optimal Integrated Scaled Drought Index (JSD

We compared the performance of ISDI with VHI (Tab)e ISDI shows much higher correlation
with in-situ drought indices than VHI. We also camg the performance of ISDI with SDCI.
Originally, SDCI uses MODIS and TRMM data, and hese alternatively used AVHRR and
NARR data. Except for Z-index and 1-month SPI, 1&bbws higher correlation with in-situ
drought indices (e.g., PDSI, PMDI, 2-month SPI, 8athh SPI, 6-month SPI, 9-month SPI, and
12-month SPI) than SDCI. Thus, ISDI generally perf® better than both VHI and SDCI to

correlate with in-situ drought indices.
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359 Table 4 Averaged correlation coefficients betwe8SbIl with 15 sets of weights and in-situ

360 drought indices over 342 climate divisions. Thehleigf three correlation coefficients for each in-

361 situ drought index (each column) and the highasetisets of weights are shown in bold.

Weights Correlation coefficients

Scaled Scaled Scaled Scaled
NUM Z-index PDSI PMDI SPI1 SPI2 SPI3 SPI6 SPI9 SPI12

LST PCP SM NDVI
1 1/4 1/4 1/4 1/4 0.697 0692 0.714 0.589 0.628 0.637 0.620 0.597 0.568
2 2/5 1/5 1/5 1/5 0.642  0.6410.659 0.509 0.558 0.572 0.561 0.533 0.504
3 15 2/5 1/5 1/5 0.809 0.679 0.689 0.742 0.698 0.671 0.603 0.562 0.527
4 1/5 1/5 2/5 U5 0.633 0.720 0.754 0.516 0.604 0.637 0.662 0.657 0.629
5 1/5 1/5 1/5 2/5 0.614  0.633.656 0.510 0.569 0.586 0.568 0.557 0.535
6 1/3 1/3 1/6 1/6 0.760 0.658 0.668 0.663 0.644 0.628 0.575 0.531 0.497
7 1/3 1/6 1/3 1/6 0.614  0.688.717 0.477 0.565 0.597 0.620 0.606 0.578
8 1/3 1/6 1/6 1/3 0.597 0.618.635 0.467 0.532 0.552 0.540 0.521 0.497
9 1/6 13 13 16 0.748 0.720 0.743 0.664 0.678 0.678 0.655 0.632 0.599
10 1/6 1/3 1/6 1/3 0.751 0.650 0.662 0.683 0.661 0.643 0.578 0.546 0.517
11 1/6 1/6 1/3 1/3 0.587 0.688).722 0.473 0.573 0.611 0.633 0.634 0.612
12 217 217 217 1/7 0.723  0.70D.723 0.615 0.641 0.646 0.628 0.600 0.567
13 217 217 1/7 217 0.724 0.643).655 0.627 0.624 0.614 0.562 0.527 0.497
14 27 17 217 27 0.584 0.6710.702 0.449 0.548 0.585 0.605 0.598 0.574
15 1/7 217 217 27 0.711  0.70D.726 0.626 0.655 0.661 0.639 0.622 0.593
VHI  1/2 0 0 1/2 0.308 0.3680.380 0.161 0.263 0.299 0.303 0.292 0.283
SDCI 1/4 1/2 0 1/4 0.833  0.558.547 0.798 0.670 0.603 0.472 0.407 0.372
362

363 4.3. Validation using crop yield data
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Corn is most sensitive to drought during the eaegroductive stage (tasseling, silking, and
pollination) (William L Kranz, Irmak, Van Donk, Yds, & Martin, 2008). Droughts that occur
during silking period can cause poor pollinatiord asult in the greatest yields reduction
(Berglund, Endres, & McWilliams, 2010; William L Enz et al., 2008). Soybeans are most
sensitive to drought during the mid- to late-reprctdre stages: pod development and seed fill
stages (Doss, Pearson, & Rogers, 1974; WilliamdanK & Specht, 2012). Droughts that occur
during those periods can have the greatest impacsoybean yields potential, resulting in
reduced number of seeds per pod and reduced see@\iliam L. Kranz & Specht, 2012).

We performed correlation analyses between ISDIeslduring growing seasons (March to
October) and corn/soybean yield anomalies from 1684013 for validation of the potential use
of ISDI. Corn yield anomalies are higher correlatgth ISDI in June, July, and August than
other months, with the highest correlation in Jdlgis period corresponds most closely with the
early reproductive stage (tasseling/silking) forrcan most states, which is the most critical
month for corn growth. Soybean yield anomaliescéweely correlated with ISDI in July, August,
and September than other months, with the highestelation in August. This period
corresponds to the critical mid- to late-reproduetstages of soybean: pod development and
seed fill stages. Drought can significantly inflaencorn and soybeans during these critical
growing periods as shown by the significant linearrelation between ISDI and corn (Fig. 3)
and soybean (Fig. 4) yield anomalies (all p-val@@8l) for the 12 states with the highest
annual corn/soybean production from 1981 to 2018. aXcluded the outlier points in 1993 in
Figure 3 and Figure 4 for lllinois, lowa, Kansasinkesota, Missouri, Nebraska, North Dakota,
South Dakota, and Wisconsin because from May toteBdper of 1993, a major flooding

occurred across those states along the MissisampMissouri rivers and their tributaries which
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severely impacted the agricultural production (Brii994; Johnson, Holmes, & Waite, 2004)

and the lower-than-normal yields were caused byfldoaling and excessive wetness instead of
droughts. In addition, we selected four represematrought years: 1983, 1988, 2002, and 2012
to compare the spatial pattern of July/August I1Sdpd county-level corn/soybean yield

anomalies, respectively. The county-level corn/saybanomalies are calculated following the
method of Lu et al. (2017). We find a very stromgrespondence between July/August low ISDI
values and lower-than-normal corn/soybean yieldnguhose representative drought years (Fig.
5). These results partially illustrate the effeetiess and robustness of this new agriculturally-

based drought index.
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Integrated Scaled Drought Index (ISDI) in July

Fig. 3. Scatterplots and correlations between goefd anomalies and the Integrated Scaled
Drought Index (ISDI) in July for the 12 states witie highest annual corn production from 1981
to 2013 among all states: (a) lowa, (b) lllinows, Nebraska, (d) Minnesota, (e) Indiana, (f) Ohio,

(g) Wisconsin, (h) South Dakota, (i) Kansas, (jsbtiuri, (k) Michigan, and (I) Texas in the US
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Integrated Scaled Drought Index (ISDI) in August

Fig. 4. Scatterplots and correlations between saylygeld anomalies and the Integrated Scaled
Drought Index (ISDI) in August for the 12 stateghwihe highest annual soybean production
from 1981 to 2013 among all states: (a) lowa, [dis, (c) Minnesota, (d) Indiana, (e) Ohio, (f)

Missouri, (g) Nebraska, (h) Arkansas, (i) South @ak (j) Kansas, (k) Michigan, and (l)

Mississippi in the US
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Fig. 5. Spatial pattern of July/August Integratexhl8d Drought Index (ISDI) and corn/soybean
yield anomalies in 1983, 1988, 2002, and 2012 énUi (the first column: July ISDI; the second
column: corn yield anomalies; the third column: AsgISDI; the fourth column: soybean vyield

anomalies).

4.4. Empirical comparison with USDM maps and VegDips

ISDI shows the highest correlation with corn angib&an yield anomalies in July and August,
respectively, the two months most critical for cand soybean growth. USDM maps are
available from 2000 to present and VegDRI mapsaaaglable from 2009 to present. So, we
choose to do a year-to-year comparison between &I0IUSDM maps in July from 2000 to
2013 and a year-to-year comparison between ISDN\&gDRI maps in August from 2009 to
2013 for empirical validation of ISDI. Also, we wkgridded 3-month SPI maps calculated from
PRISM data as an in-situ drought reference, siheditne scale of 3-month is considered very
appropriate for agricultural drought monitoring (Railt & Richard, 2003).
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Generally, the annual changes and spatial distobudf ISDI agree well with USDM maps in
July from 2000 to 2013. The ISDI could provide muctore detailed information when
compared with USDM (Fig. 6). USDM is not a strictjyantitative product but the state-of-the-
art blend of science and subjectivity including entp input (Svoboda et al., 2002), while ISDI is
a completely quantitative product without expeputs. The ISDI does not agree with USDM in
earlier years (i.e., 2000 and 2001), but agreeg well in later years (Fig. 6). In 2000, ISDI
detected a more severe drought west of the 100° aildran and in the south of Texas than
USDM did. In 2001, ISDI also detected a more sewgmight in the south of Texas than the
USDM did. Generally, ISDI shows better agreemenh\8rmonth SPI calculated from PRISM
than USDM in most years (Fig. 6).

Overall, ISDI agrees quite well with VegDRI mapssioow US drought conditions in August
from 2009 to 2013 (Fig. 7). In 2009, ISDI and VedDibbth detected extreme and severe
droughts in the coastal Northwest, the West, aedSbuthwest, and extreme drought in south
Texas. In 2010, they both detected scattered dtocgditions. In 2011, they both detected
severe and extreme drought conditions in the Sdatl2012, they both showed severe and
extreme droughts across the entire United State®013, they both detected drought condition
in the Northwest, West, Southwest, and South. HeweNsDI detected severe drought in the
Upper Midwest and Ohio Valley, but VegDRI did ndhe severe drought conditions shown in
those areas from the 3-month SPI indicates theetbptrformance of ISDI in 2013 (Fig. 7).
These comparisons with USDM maps, VegDRI maps,guititied 3-month SPI maps illustrate

the effectiveness and robustness of ISDI.
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Fig. 6. Comparisons between Integrated Scaled Drtdagex (ISDI), gridded 3-month SPI from

prism data, and the United States Drought Monitt8PM) maps in July from 2000 to 2013.
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Fig. 7. Comparisons between Integrated Scaled Drouigdex (ISDI) and the Vegetation

Drought Response Index (VegDRI) maps in August &89 to 2013.

5. Conclusion

This study successfully develops a new monthly cagiurally-based drought index, the
Integrated Scaled Drought Index (ISDI) which integs four components (scaled NDVI, scaled
land surface temperature (LST), scaled preciptafldCP), and scaled soil moisture (SM)) to
account for interannual variability of drought dwgithe longest possible time-frame of the
satellite era. We used long-term satellite-basedendations of vegetation conditions from
GIMMS AVHRR NDVI (available from 1981 to presenthd climate conditions from NECP

North American Regional Reanalysis (NARR) data {abée from 1979 to present) to calculate
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the ISDI from 1981 to 2013 to make the long-termicadtural drought quantifications and
measurements possible. Our results provide a lemg-tlimatology of drought monitoring over
the US which is beneficial for historical droughhpacts assessment and future drought
monitoring.

This new drought index incorporates a range of irgm variables controlling agricultural
drought process, especially as it integrates soisture, an important but infrequently observed
in-situ variable. Among all scaled variables, sdateil moisture shows the highest correlation
with PDSI, PMDI, and SPI at longer time scales.,(tiemonth, 9-month, and 12-month), which
suggests that scaled soil moisture can provideabéduinformation to monitor agricultural
drought. Among the four components in this new dhdundex, we highlight the significance of
the soil moisture component in agricultural drougtunitoring. The ISDI with optimum weights
shows much higher correlations with in-situ drougidices than VHI. Except for the Z-index
and 1-month SPI, ISDI shows higher correlation wittsitu drought indices (i.e., PDSI, PMDI,
2-month SPI, 3-month SPI, 6-month SPI, 9-month &Rd, 12-month SPI) than SDCI. The ISDI
performs better than VHI and SDCI to correlate witfsitu drought indices.

This new monthly drought index measures agricultdraught in the long-term and over large
regions in a consistent and quantitative fashidmns ihdex adds a new tool to the current toolbox
of available methods to monitor and assess agu@ildrought conditions on a monthly time
step. The results indicate that the ISDI can idertistorical major drought events and show
potential for future operational implementation dnrought monitoring and assessment. ISDI
shows highest correlations with corn yield anonsalr@ July, which corresponds to the early
reproductive stage (tasseling/silking) of corn, ahdws highest correlation with soybean yield

anomalies in August, which corresponds to the padelbpment and seed fill stages of soybean,
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periods when corn and soybean are most sensitiveater stress. There are significant linear
correlations between ISDI and state-level cornsoybean yield anomalies. Additionally, a very
strong spatial correspondence can be found bet@elrhAugust low ISDI values and lower-
than-normal corn/soybean yield during the four espntative drought years (i.e., 1983, 1988,
2002, and 2012). Further, ISDI agrees very welhwite two national-wide drought monitoring
systems: USDM and VegDRI maps, and can detecttgegear changes of drought conditions in
the US. The above results all indicate a good pedoce of ISDI to monitor agricultural
drought. This index can be generalized to incotgorgher satellite data, numerical model
simulations, or in-situ observations to monitor #ggicultural drought, such as soil moisture data
from Soil Moisture Active Passive (SMAP), precipiba data from Tropical Rainfall Measuring
Mission (TRMM) or other precipitation radar datamiperature data from AVHRR and MODIS,

NDVI data from MODIS, etc.
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